Neural Language Models

Large Language Models: Introduction and Recent Advances

ELL881 · AIL821

Tanmoy Chakraborty Associate Professor, IIT Delhi https://tanmoychak.com/

Slides are adopted from the Stanford course 'NLP with DL' by C. Manning

Mistral NeMo's reasoning, world knowledge, and coding accuracy are state-ofthe-art in its size category.

Mistral NeMo uses a **new tokenizer**, **Tekken** that was trained on over more than 100 languages, and compresses natural language text and source code more efficiently than the SentencePiece tokenizer.

Mistral NeMo drops!

Mistral AI collaborates with NVIDIA to release Mistral NeMo, a 12B model.

Mistral NeMo offers a large context window of up to **128k tokens** !!!

Released on July 18, 2024 https://mistral.ai/news/mistralnemo/

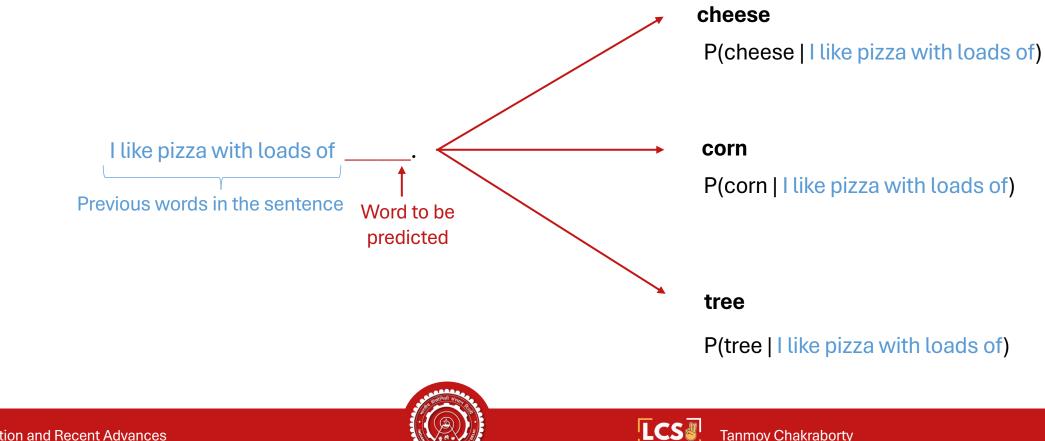
It is **trained on function calling**, and is **multilingual**, being particularly strong in English, French, German, Spanish, Italian, Portuguese, Chinese, Japanese, Korean, Arabic, and **Hindi**.

Pre-requisite for this chapter

- Loss function, backpropagation
- CNN
- RNN (LSTM/GRU)

Recall: Language Modeling

• Language Modeling is the task of predicting what word comes next



Recall: Language Modeling

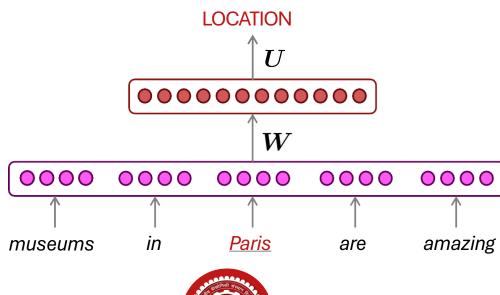
- You can also think of a Language Model as a system that assigns a probability to a piece of text.
- For example, if we have some text $x^{(1)}$, ..., $x^{(T)}$, then the probability of this text (according to the Language Model) is:

$$P(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(T)}) = P(\boldsymbol{x}^{(1)}) \times P(\boldsymbol{x}^{(2)} | \boldsymbol{x}^{(1)}) \times \dots \times P(\boldsymbol{x}^{(T)} | \boldsymbol{x}^{(T-1)}, \dots, \boldsymbol{x}^{(1)})$$
$$= \prod_{t=1}^{T} P(\boldsymbol{x}^{(t)} | \boldsymbol{x}^{(t-1)}, \dots, \boldsymbol{x}^{(1)})$$

This is what our LM provides

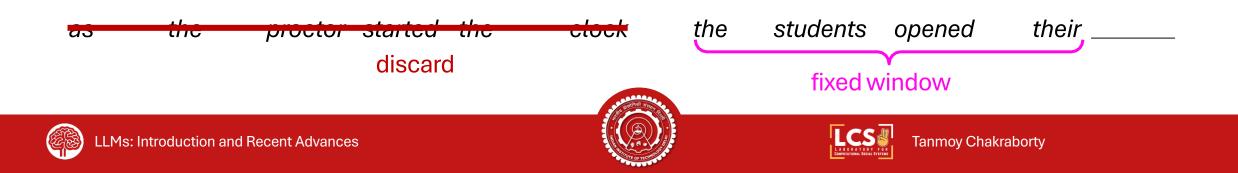
How to Build a Neural Language Model?

- Recall the Language Modeling task:
 - Input: sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$
 - Output: probability distribution of the next word $Pig(x^{(t+1)}ig|x^{(t)},\dots,x^{(1)}ig)$
- How about a window-based neural model?

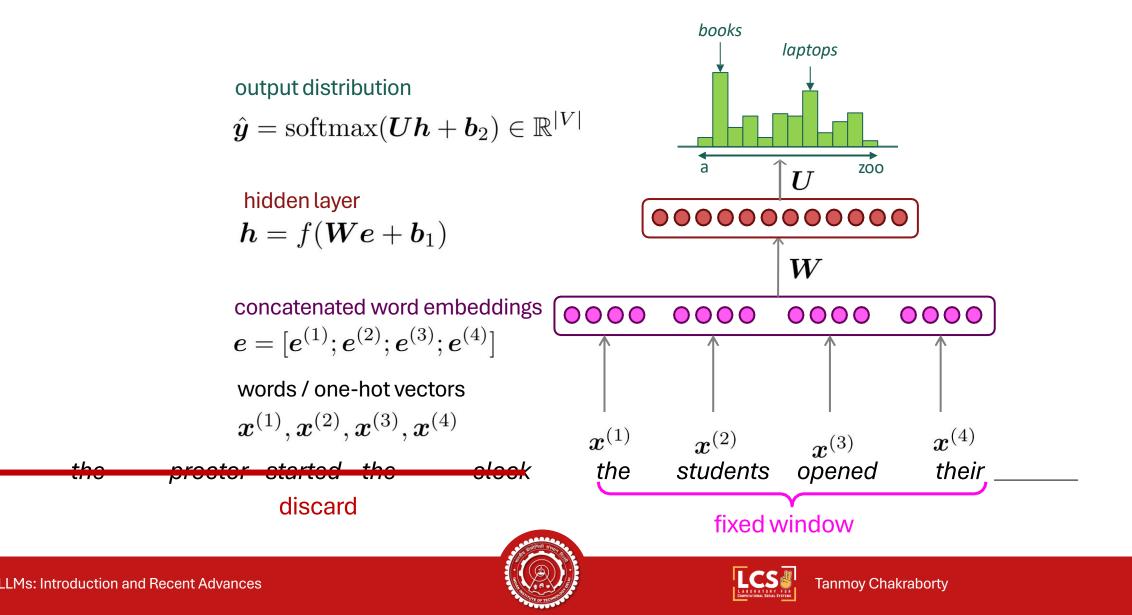


Example: NER Task

A Fixed-window Neural Language Model



A Fixed-window Neural Language Model



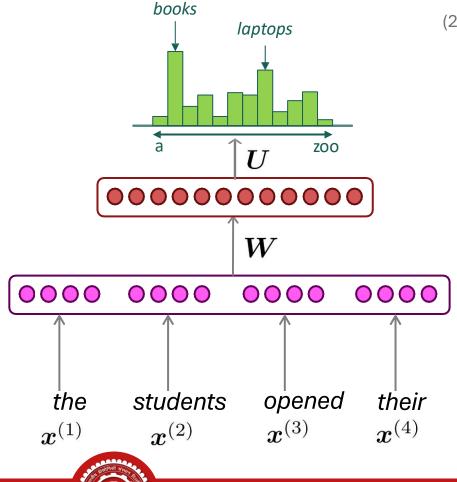
A Fixed-window Neural Language Model

Improvements over *n*-gram LM:

- No sparsity problem
- Don't need to store all observed ngrams

Remaining problems:

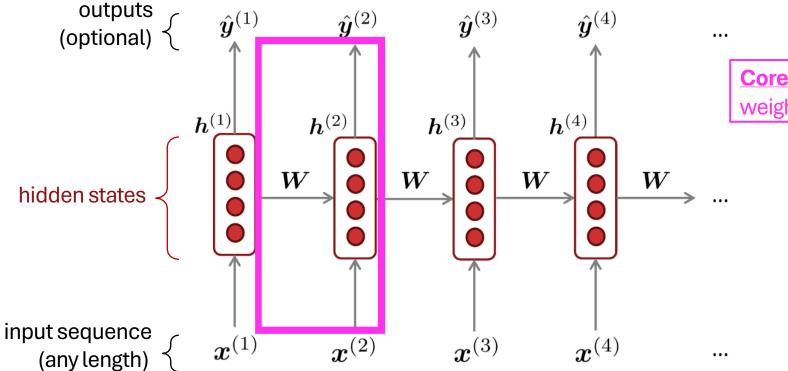
- Fixed window is too small
- Enlarging window enlarges W
- x⁽¹⁾ and x⁽²⁾ are multiplied by completely different weights in W.
 No symmetry in how the inputs are processed.



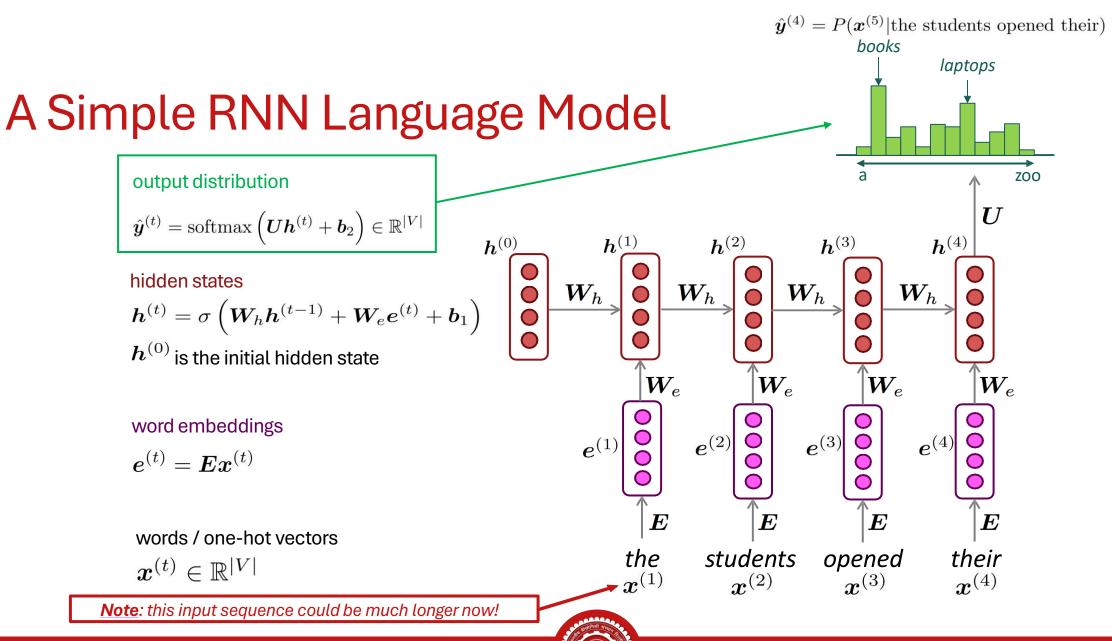
Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

> We need a neural architecture that can process **any length input**

Recurrent Neural Networks (RNN)



Core idea: Apply the same weights *W* repeatedly



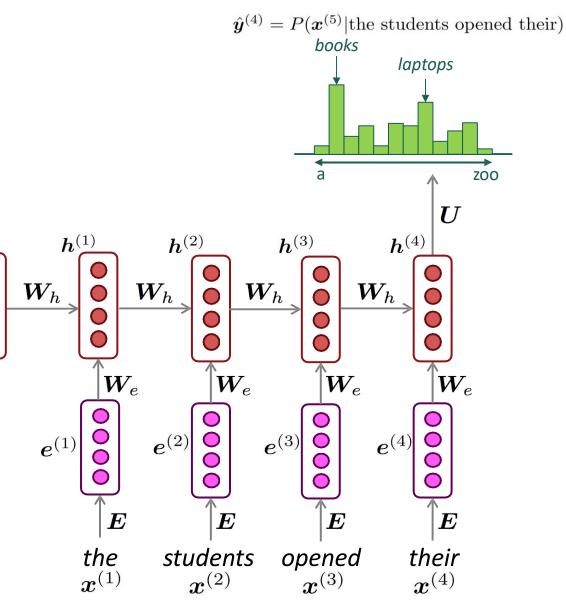
RNN Language Models

RNN Advantages:

- Can process any length input
- Computation for step t can (in theory) use information from many steps back
- Model size doesn't increase for longer input context
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.

RNN Disadvantages:

- Recurrent computation is slow
- In practice, difficult to access information from many steps back



 $oldsymbol{h}^{(0)}$

 \bigcirc

 \bigcirc

Training an RNN Language Model

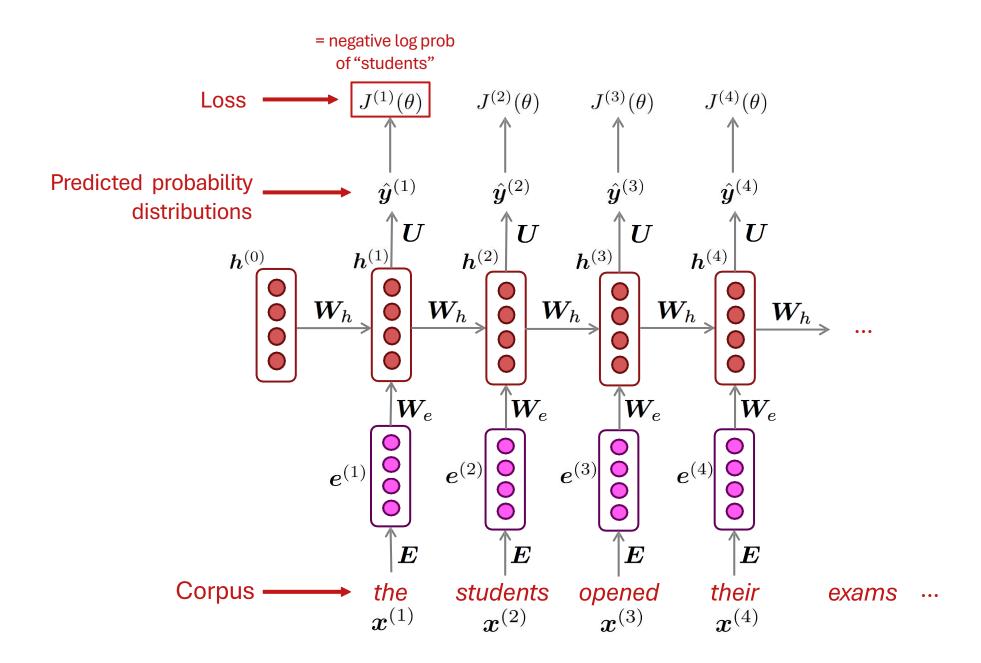
Training an RNN Language Model

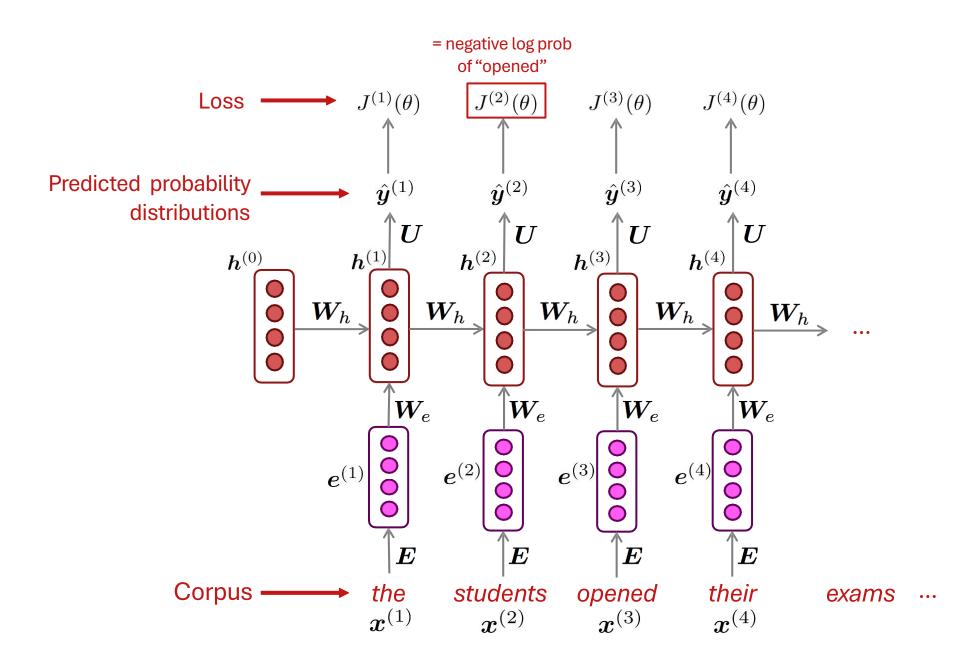
- Get a big corpus of text which is a sequence of words $x^{(1)}$, $x^{(2)}$, ..., $x^{(T)}$ ٠
- Feed into RNN-LM; compute output distribution $\hat{y}^{(t)}$ for every step t. ٠
 - i.e., predict probability distribution of every word, given words so far
- Loss function on step t is cross-entropy between predicted probability distribution $\hat{v}^{(t)}$, and the true next ۲ word $y^{(t)}$ (one-hot for $x^{(t+1)}$):

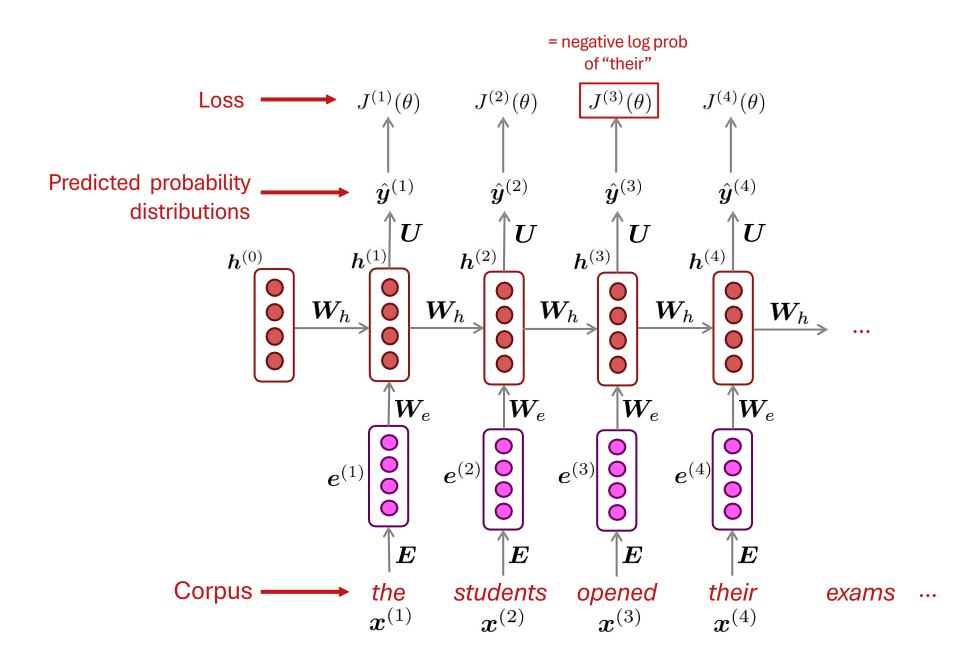
$$J^{(t)}(\theta) = CE(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}) = -\sum_{w \in V} \boldsymbol{y}_{w}^{(t)} \log \hat{\boldsymbol{y}}_{w}^{(t)} = -\log \hat{\boldsymbol{y}}_{\boldsymbol{x}_{t+1}}^{(t)}$$

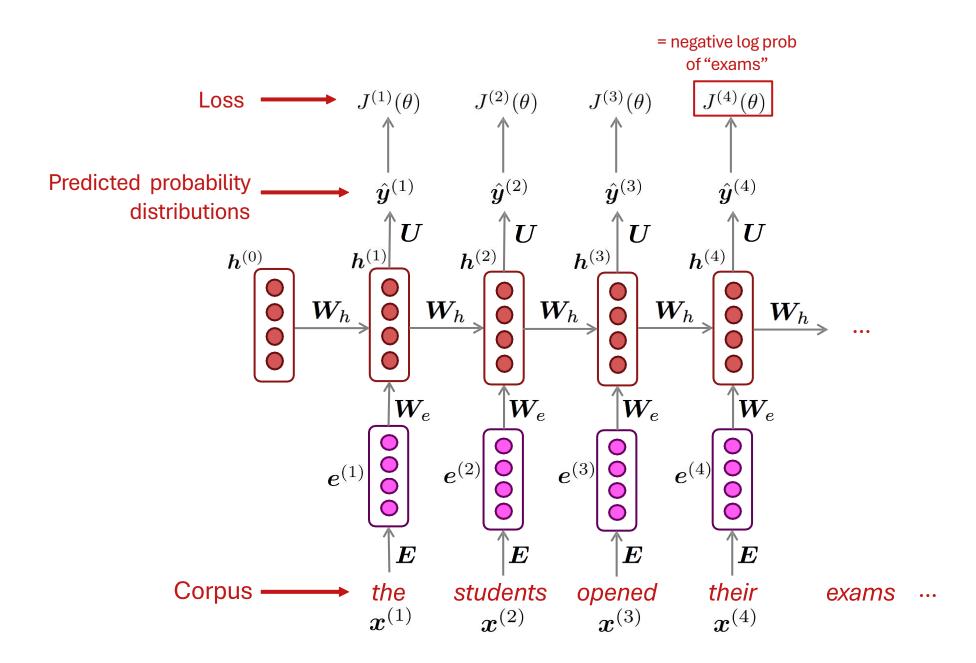
Average this to get overall loss for entire training set: ۲

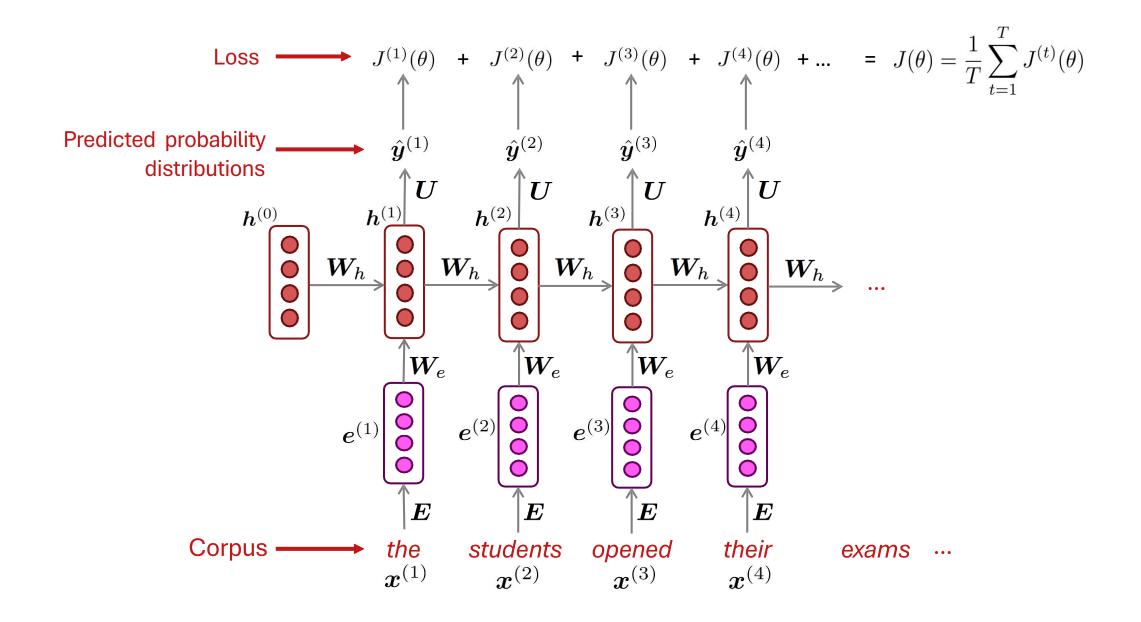
$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta) = \frac{1}{T} \sum_{t=1}^{T} -\log \hat{y}_{x_{t+1}}^{(t)}$$









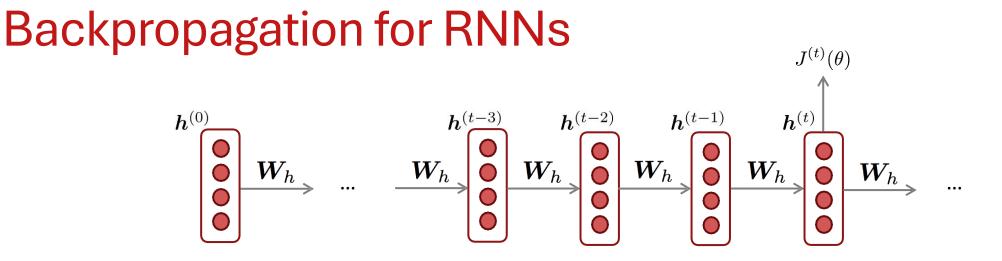


Training a RNN Language Model

• However: Computing loss and gradients across entire corpus $x^{(1)}, x^{(2)}, ..., x^{(T)}$ at once is too expensive (memory-wise)!

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)$$

- In practice, consider $x^{(1)}, x^{(2)}, \dots, x^{(T)}$ as a sentence (or a document)
- <u>Recall: Stochastic Gradient Descent</u> allows us to compute loss and gradients for small chunk of data, and update.
- Compute loss $J(\theta)$ for a sentence (actually, a batch of sentences), compute gradients and update weights. Repeat on a new batch of sentences.



Question: What's the derivative of $J^{(t)}(\theta)$ wint the repeated weight matrix W_h ?

Answer:
$$\frac{\partial J^{(t)}}{\partial W_h} = \sum_{i=1}^t \frac{\partial J^{(t)}}{\partial W_h}\Big|_{(i)}$$

"The gradient w.r.t. a repeated weight is the sum of the gradient w.r.t. each time it appears"

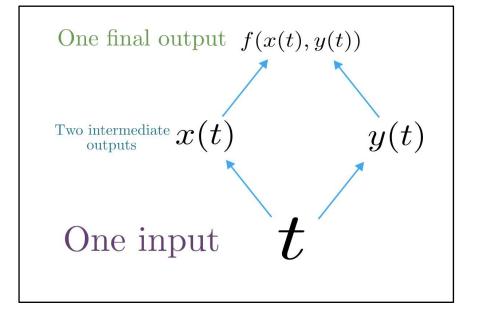
Why?

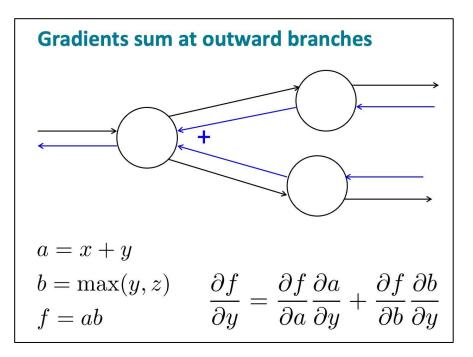
Multivariable Chain Rule

- Given a multivariable function f(x,y), and two single variable functions x(t) and y(t), here's what the multivariable chain rule says:

$$\underbrace{\frac{d}{dt}f(\boldsymbol{x}(t),\boldsymbol{y}(t))}_{dt} = \frac{\partial f}{\partial \boldsymbol{x}}\frac{d\boldsymbol{x}}{dt} + \frac{\partial f}{\partial \boldsymbol{y}}\frac{d\boldsymbol{y}}{dt}$$

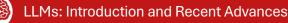
Derivative of composition function



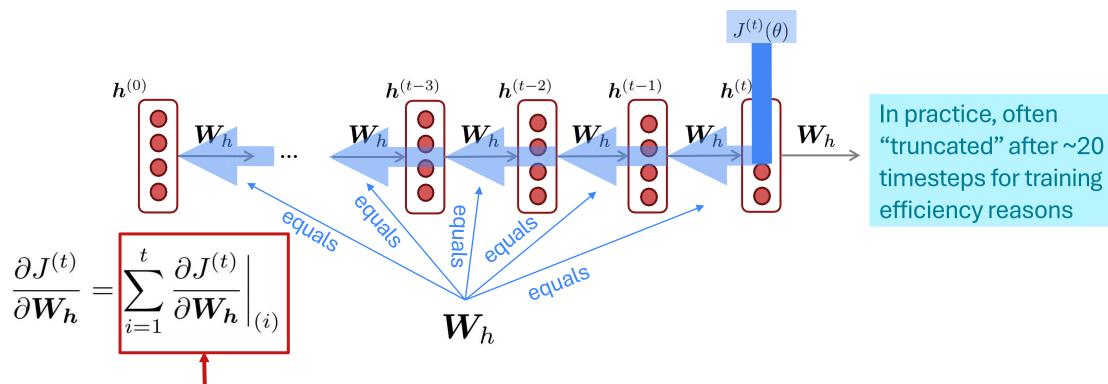


Source:

https://www.khanacademy.org/math/multivariable-calculus/multivariablederivatives/differentiating-vector-valued-functions/a/multivariable-chain-rulesimple-version



Training The Parameters of RNNs: Backpropagation for RNNs



Question: How do we calculate this?

Answer: Backpropagate over timesteps i = t, ..., 0, summing gradients as you go. This algorithm is called **"backpropagation through time"** Apply the multivariable chain rule:

= 1

$$\frac{\partial J^{(t)}}{\partial \boldsymbol{W}_{h}} = \sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial \boldsymbol{W}_{h}} \Big|_{(i)} \frac{\partial \boldsymbol{W}_{h} \Big|_{(i)}}{\partial \boldsymbol{W}_{h}}$$
$$\sum_{i=1}^{t} \frac{\partial J^{(t)}}{\partial J^{(t)}} \Big|_{(i)}$$

$$=\sum_{i=1}\frac{\partial J^{(i)}}{\partial \boldsymbol{W}_{h}}\Big|_{(i)}$$